Is this function uniformly continuous or not?












2














I've been recently introduced to the concept of uniform continuity and I'm having some trouble deciding whether a function is uniformly continuous or not.
The function is:
$$f(x)=begin{cases}dfrac{sin(x^5)}{x} & xneq0 \ 0 & x=0end{cases}$$



I mean, I know that if the derivative of the function is bounded, then we can conclude that it is uniformly continuous, but if it isn't, I really don't know how to proceed.










share|cite|improve this question









New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2




    Uniformly continuous on what set?
    – user587192
    2 hours ago












  • I believe it must be on $mathbb R$
    – fonini
    2 hours ago










  • On all the real numbers
    – Sergamar
    2 hours ago










  • It can't be on $mathbb{R}$: this function not defined at $x=0$.
    – user587192
    2 hours ago








  • 1




    0 if x = 0, that expresion otherwise
    – Sergamar
    2 hours ago
















2














I've been recently introduced to the concept of uniform continuity and I'm having some trouble deciding whether a function is uniformly continuous or not.
The function is:
$$f(x)=begin{cases}dfrac{sin(x^5)}{x} & xneq0 \ 0 & x=0end{cases}$$



I mean, I know that if the derivative of the function is bounded, then we can conclude that it is uniformly continuous, but if it isn't, I really don't know how to proceed.










share|cite|improve this question









New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
















  • 2




    Uniformly continuous on what set?
    – user587192
    2 hours ago












  • I believe it must be on $mathbb R$
    – fonini
    2 hours ago










  • On all the real numbers
    – Sergamar
    2 hours ago










  • It can't be on $mathbb{R}$: this function not defined at $x=0$.
    – user587192
    2 hours ago








  • 1




    0 if x = 0, that expresion otherwise
    – Sergamar
    2 hours ago














2












2








2







I've been recently introduced to the concept of uniform continuity and I'm having some trouble deciding whether a function is uniformly continuous or not.
The function is:
$$f(x)=begin{cases}dfrac{sin(x^5)}{x} & xneq0 \ 0 & x=0end{cases}$$



I mean, I know that if the derivative of the function is bounded, then we can conclude that it is uniformly continuous, but if it isn't, I really don't know how to proceed.










share|cite|improve this question









New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











I've been recently introduced to the concept of uniform continuity and I'm having some trouble deciding whether a function is uniformly continuous or not.
The function is:
$$f(x)=begin{cases}dfrac{sin(x^5)}{x} & xneq0 \ 0 & x=0end{cases}$$



I mean, I know that if the derivative of the function is bounded, then we can conclude that it is uniformly continuous, but if it isn't, I really don't know how to proceed.







real-analysis






share|cite|improve this question









New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.











share|cite|improve this question









New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









share|cite|improve this question




share|cite|improve this question








edited 1 hour ago





















New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.









asked 2 hours ago









Sergamar

113




113




New contributor




Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.





New contributor





Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.






Sergamar is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.








  • 2




    Uniformly continuous on what set?
    – user587192
    2 hours ago












  • I believe it must be on $mathbb R$
    – fonini
    2 hours ago










  • On all the real numbers
    – Sergamar
    2 hours ago










  • It can't be on $mathbb{R}$: this function not defined at $x=0$.
    – user587192
    2 hours ago








  • 1




    0 if x = 0, that expresion otherwise
    – Sergamar
    2 hours ago














  • 2




    Uniformly continuous on what set?
    – user587192
    2 hours ago












  • I believe it must be on $mathbb R$
    – fonini
    2 hours ago










  • On all the real numbers
    – Sergamar
    2 hours ago










  • It can't be on $mathbb{R}$: this function not defined at $x=0$.
    – user587192
    2 hours ago








  • 1




    0 if x = 0, that expresion otherwise
    – Sergamar
    2 hours ago








2




2




Uniformly continuous on what set?
– user587192
2 hours ago






Uniformly continuous on what set?
– user587192
2 hours ago














I believe it must be on $mathbb R$
– fonini
2 hours ago




I believe it must be on $mathbb R$
– fonini
2 hours ago












On all the real numbers
– Sergamar
2 hours ago




On all the real numbers
– Sergamar
2 hours ago












It can't be on $mathbb{R}$: this function not defined at $x=0$.
– user587192
2 hours ago






It can't be on $mathbb{R}$: this function not defined at $x=0$.
– user587192
2 hours ago






1




1




0 if x = 0, that expresion otherwise
– Sergamar
2 hours ago




0 if x = 0, that expresion otherwise
– Sergamar
2 hours ago










1 Answer
1






active

oldest

votes


















3














The function $f$ is uniformly continuous on $mathbb{R}$.



Note that $frac{sin x^5}{x} = x^4 frac{sin x^5}{x^5} to 0 cdot 1 = 0$ as $x to 0$ (from the left or the right). Hence, $f$ is continuous and uniformly continuous on any compact interval $[-a,a]$.



Since $f(x) to 0 $ as $|x| to infty$ the function is also uniformly continuous on intervals $(-infty,-a]$ and $[a,infty)$. Any continuous function with a finite limit as $x to pm infty$ is uniformly continuous -- proved many times on this site.



It is a common misconception that a function with a derivative that is unbounded for large $|x|$ cannot be uniformly continuous. The condition that $|f'(x)| to +infty$ as $|x| to +infty$ guarantees non-uniform continuity.






share|cite|improve this answer























  • Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
    – Jakobian
    1 hour ago








  • 2




    @Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
    – RRL
    1 hour ago












  • @Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
    – ImNotTheGuy
    1 hour ago










  • @RRL oh, thank you, it was a typo and it got me confused
    – Jakobian
    1 hour ago












  • @Jakobian It got me confused too, lol.
    – ImNotTheGuy
    1 hour ago











Your Answer





StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");

StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);

StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});

function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
autoActivateHeartbeat: false,
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});


}
});






Sergamar is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052560%2fis-this-function-uniformly-continuous-or-not%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown

























1 Answer
1






active

oldest

votes








1 Answer
1






active

oldest

votes









active

oldest

votes






active

oldest

votes









3














The function $f$ is uniformly continuous on $mathbb{R}$.



Note that $frac{sin x^5}{x} = x^4 frac{sin x^5}{x^5} to 0 cdot 1 = 0$ as $x to 0$ (from the left or the right). Hence, $f$ is continuous and uniformly continuous on any compact interval $[-a,a]$.



Since $f(x) to 0 $ as $|x| to infty$ the function is also uniformly continuous on intervals $(-infty,-a]$ and $[a,infty)$. Any continuous function with a finite limit as $x to pm infty$ is uniformly continuous -- proved many times on this site.



It is a common misconception that a function with a derivative that is unbounded for large $|x|$ cannot be uniformly continuous. The condition that $|f'(x)| to +infty$ as $|x| to +infty$ guarantees non-uniform continuity.






share|cite|improve this answer























  • Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
    – Jakobian
    1 hour ago








  • 2




    @Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
    – RRL
    1 hour ago












  • @Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
    – ImNotTheGuy
    1 hour ago










  • @RRL oh, thank you, it was a typo and it got me confused
    – Jakobian
    1 hour ago












  • @Jakobian It got me confused too, lol.
    – ImNotTheGuy
    1 hour ago
















3














The function $f$ is uniformly continuous on $mathbb{R}$.



Note that $frac{sin x^5}{x} = x^4 frac{sin x^5}{x^5} to 0 cdot 1 = 0$ as $x to 0$ (from the left or the right). Hence, $f$ is continuous and uniformly continuous on any compact interval $[-a,a]$.



Since $f(x) to 0 $ as $|x| to infty$ the function is also uniformly continuous on intervals $(-infty,-a]$ and $[a,infty)$. Any continuous function with a finite limit as $x to pm infty$ is uniformly continuous -- proved many times on this site.



It is a common misconception that a function with a derivative that is unbounded for large $|x|$ cannot be uniformly continuous. The condition that $|f'(x)| to +infty$ as $|x| to +infty$ guarantees non-uniform continuity.






share|cite|improve this answer























  • Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
    – Jakobian
    1 hour ago








  • 2




    @Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
    – RRL
    1 hour ago












  • @Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
    – ImNotTheGuy
    1 hour ago










  • @RRL oh, thank you, it was a typo and it got me confused
    – Jakobian
    1 hour ago












  • @Jakobian It got me confused too, lol.
    – ImNotTheGuy
    1 hour ago














3












3








3






The function $f$ is uniformly continuous on $mathbb{R}$.



Note that $frac{sin x^5}{x} = x^4 frac{sin x^5}{x^5} to 0 cdot 1 = 0$ as $x to 0$ (from the left or the right). Hence, $f$ is continuous and uniformly continuous on any compact interval $[-a,a]$.



Since $f(x) to 0 $ as $|x| to infty$ the function is also uniformly continuous on intervals $(-infty,-a]$ and $[a,infty)$. Any continuous function with a finite limit as $x to pm infty$ is uniformly continuous -- proved many times on this site.



It is a common misconception that a function with a derivative that is unbounded for large $|x|$ cannot be uniformly continuous. The condition that $|f'(x)| to +infty$ as $|x| to +infty$ guarantees non-uniform continuity.






share|cite|improve this answer














The function $f$ is uniformly continuous on $mathbb{R}$.



Note that $frac{sin x^5}{x} = x^4 frac{sin x^5}{x^5} to 0 cdot 1 = 0$ as $x to 0$ (from the left or the right). Hence, $f$ is continuous and uniformly continuous on any compact interval $[-a,a]$.



Since $f(x) to 0 $ as $|x| to infty$ the function is also uniformly continuous on intervals $(-infty,-a]$ and $[a,infty)$. Any continuous function with a finite limit as $x to pm infty$ is uniformly continuous -- proved many times on this site.



It is a common misconception that a function with a derivative that is unbounded for large $|x|$ cannot be uniformly continuous. The condition that $|f'(x)| to +infty$ as $|x| to +infty$ guarantees non-uniform continuity.







share|cite|improve this answer














share|cite|improve this answer



share|cite|improve this answer








edited 50 mins ago

























answered 1 hour ago









RRL

48.7k42573




48.7k42573












  • Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
    – Jakobian
    1 hour ago








  • 2




    @Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
    – RRL
    1 hour ago












  • @Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
    – ImNotTheGuy
    1 hour ago










  • @RRL oh, thank you, it was a typo and it got me confused
    – Jakobian
    1 hour ago












  • @Jakobian It got me confused too, lol.
    – ImNotTheGuy
    1 hour ago


















  • Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
    – Jakobian
    1 hour ago








  • 2




    @Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
    – RRL
    1 hour ago












  • @Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
    – ImNotTheGuy
    1 hour ago










  • @RRL oh, thank you, it was a typo and it got me confused
    – Jakobian
    1 hour ago












  • @Jakobian It got me confused too, lol.
    – ImNotTheGuy
    1 hour ago
















Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
– Jakobian
1 hour ago






Could you show me some proof of the fact that if $|f'(x)|to infty$ as $|x|to infty$ then it collides with uniform convergence?
– Jakobian
1 hour ago






2




2




@Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
– RRL
1 hour ago






@Jakobian: Sure. $|f(x) - f(y)| = |f'(xi)||x - y|$ by the MVT. For any $delta > 0$ take $y = x + delta/2$ so that $|x-y| < delta$ and $|f(x) - f(y)| = |f'(xi)|delta/2$ Now this stays bigger than $1$ for some $x$ and $xi > x$ sufficiently large if $|f'(x)| to +infty$.
– RRL
1 hour ago














@Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
– ImNotTheGuy
1 hour ago




@Jakobian Where did uniform convergence come into this question? I thought we were talking about continuity?
– ImNotTheGuy
1 hour ago












@RRL oh, thank you, it was a typo and it got me confused
– Jakobian
1 hour ago






@RRL oh, thank you, it was a typo and it got me confused
– Jakobian
1 hour ago














@Jakobian It got me confused too, lol.
– ImNotTheGuy
1 hour ago




@Jakobian It got me confused too, lol.
– ImNotTheGuy
1 hour ago










Sergamar is a new contributor. Be nice, and check out our Code of Conduct.










draft saved

draft discarded


















Sergamar is a new contributor. Be nice, and check out our Code of Conduct.













Sergamar is a new contributor. Be nice, and check out our Code of Conduct.












Sergamar is a new contributor. Be nice, and check out our Code of Conduct.
















Thanks for contributing an answer to Mathematics Stack Exchange!


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


Use MathJax to format equations. MathJax reference.


To learn more, see our tips on writing great answers.





Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


Please pay close attention to the following guidance:


  • Please be sure to answer the question. Provide details and share your research!

But avoid



  • Asking for help, clarification, or responding to other answers.

  • Making statements based on opinion; back them up with references or personal experience.


To learn more, see our tips on writing great answers.




draft saved


draft discarded














StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3052560%2fis-this-function-uniformly-continuous-or-not%23new-answer', 'question_page');
}
);

Post as a guest















Required, but never shown





















































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown

































Required, but never shown














Required, but never shown












Required, but never shown







Required, but never shown







Popular posts from this blog

flock() on closed filehandle LOCK_FILE at /usr/bin/apt-mirror

Mangá

Eduardo VII do Reino Unido