how do we prove that a sum of two periods is still a period?












7












$begingroup$


Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










share|cite|improve this question







New contributor




periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.







$endgroup$

















    7












    $begingroup$


    Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










    share|cite|improve this question







    New contributor




    periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.







    $endgroup$















      7












      7








      7


      1



      $begingroup$


      Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...










      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.







      $endgroup$




      Kontsevich and Zagier define periods as the values of absolutely convergent integrals $int_sigma f$ where $f$ is a rational function with rational coefficients and $sigma$ is a semi-algebraic subset of $mathbb{R}^n$. How do we prove that the sum of two such numbers is still of this form? I've tried a few things but they don't seem to work...







      ag.algebraic-geometry nt.number-theory






      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|cite|improve this question







      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|cite|improve this question




      share|cite|improve this question






      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked 2 hours ago









      periodsperiods

      361




      361




      New contributor




      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      periods is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes


















          10












          $begingroup$

          Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



          Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






          share|cite|improve this answer









          $endgroup$














            Your Answer





            StackExchange.ifUsing("editor", function () {
            return StackExchange.using("mathjaxEditing", function () {
            StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
            StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
            });
            });
            }, "mathjax-editing");

            StackExchange.ready(function() {
            var channelOptions = {
            tags: "".split(" "),
            id: "504"
            };
            initTagRenderer("".split(" "), "".split(" "), channelOptions);

            StackExchange.using("externalEditor", function() {
            // Have to fire editor after snippets, if snippets enabled
            if (StackExchange.settings.snippets.snippetsEnabled) {
            StackExchange.using("snippets", function() {
            createEditor();
            });
            }
            else {
            createEditor();
            }
            });

            function createEditor() {
            StackExchange.prepareEditor({
            heartbeatType: 'answer',
            autoActivateHeartbeat: false,
            convertImagesToLinks: true,
            noModals: true,
            showLowRepImageUploadWarning: true,
            reputationToPostImages: 10,
            bindNavPrevention: true,
            postfix: "",
            imageUploader: {
            brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
            contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
            allowUrls: true
            },
            noCode: true, onDemand: true,
            discardSelector: ".discard-answer"
            ,immediatelyShowMarkdownHelp:true
            });


            }
            });






            periods is a new contributor. Be nice, and check out our Code of Conduct.










            draft saved

            draft discarded


















            StackExchange.ready(
            function () {
            StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
            }
            );

            Post as a guest















            Required, but never shown

























            1 Answer
            1






            active

            oldest

            votes








            1 Answer
            1






            active

            oldest

            votes









            active

            oldest

            votes






            active

            oldest

            votes









            10












            $begingroup$

            Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



            Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






            share|cite|improve this answer









            $endgroup$


















              10












              $begingroup$

              Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



              Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






              share|cite|improve this answer









              $endgroup$
















                10












                10








                10





                $begingroup$

                Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



                Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.






                share|cite|improve this answer









                $endgroup$



                Let $alpha$ and $beta$ be two periods corresponding respectively to two absolutely convergent integrals $int_sigma f(x)dx$ and $int_tau g(y)dy$, where $f$ (resp. $g$) is a rational function on $Bbb Q$ with $r$ (resp. $s$) variables and $sigma$ (resp. $tau$) is a semi-algebraic subset of $Bbb R^r$ (resp. $Bbb R^s$).



                Setting $omega:=sigmatimesleftlbrace0rightrbracetimes(0,1)^scoprod(0,1)^rtimesleftlbrace1rightrbracetimestau$, one immediately gets that $$alpha+beta=int_omega left[(1-t)f(x)+tg(y)right]dxdydt$$which is again an absolutely convergent integral, so that $alpha+beta$ is a period.







                share|cite|improve this answer












                share|cite|improve this answer



                share|cite|improve this answer










                answered 2 hours ago









                GaussianGaussian

                1488




                1488






















                    periods is a new contributor. Be nice, and check out our Code of Conduct.










                    draft saved

                    draft discarded


















                    periods is a new contributor. Be nice, and check out our Code of Conduct.













                    periods is a new contributor. Be nice, and check out our Code of Conduct.












                    periods is a new contributor. Be nice, and check out our Code of Conduct.
















                    Thanks for contributing an answer to MathOverflow!


                    • Please be sure to answer the question. Provide details and share your research!

                    But avoid



                    • Asking for help, clarification, or responding to other answers.

                    • Making statements based on opinion; back them up with references or personal experience.


                    Use MathJax to format equations. MathJax reference.


                    To learn more, see our tips on writing great answers.




                    draft saved


                    draft discarded














                    StackExchange.ready(
                    function () {
                    StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathoverflow.net%2fquestions%2f326977%2fhow-do-we-prove-that-a-sum-of-two-periods-is-still-a-period%23new-answer', 'question_page');
                    }
                    );

                    Post as a guest















                    Required, but never shown





















































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown

































                    Required, but never shown














                    Required, but never shown












                    Required, but never shown







                    Required, but never shown







                    Popular posts from this blog

                    flock() on closed filehandle LOCK_FILE at /usr/bin/apt-mirror

                    Mangá

                     ⁒  ․,‪⁊‑⁙ ⁖, ⁇‒※‌, †,⁖‗‌⁝    ‾‸⁘,‖⁔⁣,⁂‾
”‑,‥–,‬ ,⁀‹⁋‴⁑ ‒ ,‴⁋”‼ ⁨,‷⁔„ ‰′,‐‚ ‥‡‎“‷⁃⁨⁅⁣,⁔
⁇‘⁔⁡⁏⁌⁡‿‶‏⁨ ⁣⁕⁖⁨⁩⁥‽⁀  ‴‬⁜‟ ⁃‣‧⁕‮ …‍⁨‴ ⁩,⁚⁖‫ ,‵ ⁀,‮⁝‣‣ ⁑  ⁂– ․, ‾‽ ‏⁁“⁗‸ ‾… ‹‡⁌⁎‸‘ ‡⁏⁌‪ ‵⁛ ‎⁨ ―⁦⁤⁄⁕