Variational perturbation theory




In mathematics, variational perturbation theory (VPT) is a mathematical method to convert divergent power series in a small expansion parameter, say



s=∑n=0∞angn{displaystyle s=sum _{n=0}^{infty }a_{n}g^{n}}{displaystyle s=sum _{n=0}^{infty }a_{n}g^{n}},

into a convergent series in powers



s=∑n=0∞bn/(gω)n{displaystyle s=sum _{n=0}^{infty }b_{n}/(g^{omega })^{n}}{displaystyle s=sum _{n=0}^{infty }b_{n}/(g^{omega })^{n}},

where ω{displaystyle omega }omega is a critical exponent (the so-called index of "approach to scaling" introduced by Franz Wegner). This is possible with the help of variational parameters, which are determined by optimization order by order in g{displaystyle g}g. The partial sums are converted to convergent partial sums by a method developed in 1992.[1]


Most perturbation expansions in quantum mechanics are divergent for any small coupling strength g{displaystyle g}g. They can be made convergent by VPT (for details see the first textbook cited below). The convergence is exponentially fast.[2][3]


After its success in quantum mechanics, VPT has been developed further to become an important mathematical tool in quantum field theory with its anomalous dimensions.[4] Applications focus on the theory of critical phenomena. It has led to the most accurate predictions of critical exponents.
More details can be read here.



References





  1. ^
    Kleinert, H. (1995). "Systematic Corrections to Variational Calculation of Effective Classical Potential" (PDF). Physics Letters A. 173 (4–5): 332–342. Bibcode:1993PhLA..173..332K. doi:10.1016/0375-9601(93)90246-V..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output .citation q{quotes:"""""""'""'"}.mw-parser-output .citation .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .citation .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Wikisource-logo.svg/12px-Wikisource-logo.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-maint{display:none;color:#33aa33;margin-left:0.3em}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}



  2. ^
    Kleinert, H.; Janke, W. (1993). "Convergence Behavior of Variational Perturbation Expansion - A Method for Locating Bender-Wu Singularities" (PDF). Physics Letters A. 206: 283–289. arXiv:quant-ph/9509005. Bibcode:1995PhLA..206..283K. doi:10.1016/0375-9601(95)00521-4.



  3. ^
    Guida, R.; Konishi, K.; Suzuki, H. (1996). "Systematic Corrections to Variational Calculation of Effective Classical Potential". Annals of Physics. 249 (1): 109–145. arXiv:hep-th/9505084. Bibcode:1996AnPhy.249..109G. doi:10.1006/aphy.1996.0066.



  4. ^
    Kleinert, H. (1998). "Strong-coupling behavior of φ^4 theories and critical exponents" (PDF). Physical Review D. 57 (4): 2264. Bibcode:1998PhRvD..57.2264K. doi:10.1103/PhysRevD.57.2264.





External links




  • Kleinert H., Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3. Auflage, World Scientific (Singapore, 2004) (readable online here) (see Chapter 5)


  • Kleinert H. and Verena Schulte-Frohlinde, Critical Properties of φ4-Theories, World Scientific (Singapur, 2001); Paperback
    ISBN 981-02-4658-7 (readable online here) (see Chapter 19)


  • Feynman, R. P.; Kleinert, H. (1986). "Effective classical partition functions". Physical Review A. 34 (6): 5080–5084. Bibcode:1986PhRvA..34.5080F. doi:10.1103/PhysRevA.34.5080. PMID 9897894.




Popular posts from this blog

flock() on closed filehandle LOCK_FILE at /usr/bin/apt-mirror

Mangá

 ⁒  ․,‪⁊‑⁙ ⁖, ⁇‒※‌, †,⁖‗‌⁝    ‾‸⁘,‖⁔⁣,⁂‾
”‑,‥–,‬ ,⁀‹⁋‴⁑ ‒ ,‴⁋”‼ ⁨,‷⁔„ ‰′,‐‚ ‥‡‎“‷⁃⁨⁅⁣,⁔
⁇‘⁔⁡⁏⁌⁡‿‶‏⁨ ⁣⁕⁖⁨⁩⁥‽⁀  ‴‬⁜‟ ⁃‣‧⁕‮ …‍⁨‴ ⁩,⁚⁖‫ ,‵ ⁀,‮⁝‣‣ ⁑  ⁂– ․, ‾‽ ‏⁁“⁗‸ ‾… ‹‡⁌⁎‸‘ ‡⁏⁌‪ ‵⁛ ‎⁨ ―⁦⁤⁄⁕