Why can Mathematica solve integral(a)+integral(b), but not integral(a+b)?
up vote
3
down vote
favorite
I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.
$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$
Nevertheless the splitted integral can be solved.
$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$
What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.
calculus-and-analysis
New contributor
add a comment |
up vote
3
down vote
favorite
I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.
$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$
Nevertheless the splitted integral can be solved.
$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$
What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.
calculus-and-analysis
New contributor
add a comment |
up vote
3
down vote
favorite
up vote
3
down vote
favorite
I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.
$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$
Nevertheless the splitted integral can be solved.
$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$
What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.
calculus-and-analysis
New contributor
I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.
$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$
Nevertheless the splitted integral can be solved.
$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$
What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.
calculus-and-analysis
calculus-and-analysis
New contributor
New contributor
New contributor
asked Nov 23 at 9:49
Schnarco
182
182
New contributor
New contributor
add a comment |
add a comment |
1 Answer
1
active
oldest
votes
up vote
2
down vote
accepted
This is a known problem with the standard Mathematica Integrate function.
Therefore I wrote (a long long time ago) Integrate2
in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :
Needs["FeynCalc`"];
AbsoluteTiming[
li2 = PolyLog[2, #1] & ;
int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
(3*t*(t + 1))); Collect[
Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
add a comment |
1 Answer
1
active
oldest
votes
1 Answer
1
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
2
down vote
accepted
This is a known problem with the standard Mathematica Integrate function.
Therefore I wrote (a long long time ago) Integrate2
in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :
Needs["FeynCalc`"];
AbsoluteTiming[
li2 = PolyLog[2, #1] & ;
int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
(3*t*(t + 1))); Collect[
Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
add a comment |
up vote
2
down vote
accepted
This is a known problem with the standard Mathematica Integrate function.
Therefore I wrote (a long long time ago) Integrate2
in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :
Needs["FeynCalc`"];
AbsoluteTiming[
li2 = PolyLog[2, #1] & ;
int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
(3*t*(t + 1))); Collect[
Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
add a comment |
up vote
2
down vote
accepted
up vote
2
down vote
accepted
This is a known problem with the standard Mathematica Integrate function.
Therefore I wrote (a long long time ago) Integrate2
in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :
Needs["FeynCalc`"];
AbsoluteTiming[
li2 = PolyLog[2, #1] & ;
int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
(3*t*(t + 1))); Collect[
Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]
This is a known problem with the standard Mathematica Integrate function.
Therefore I wrote (a long long time ago) Integrate2
in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :
Needs["FeynCalc`"];
AbsoluteTiming[
li2 = PolyLog[2, #1] & ;
int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
(3*t*(t + 1))); Collect[
Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]
answered Nov 23 at 10:26
Rolf Mertig
13.6k13366
13.6k13366
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
add a comment |
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
– Schnarco
Nov 23 at 10:47
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
– Rolf Mertig
Nov 23 at 11:22
add a comment |
Schnarco is a new contributor. Be nice, and check out our Code of Conduct.
Schnarco is a new contributor. Be nice, and check out our Code of Conduct.
Schnarco is a new contributor. Be nice, and check out our Code of Conduct.
Schnarco is a new contributor. Be nice, and check out our Code of Conduct.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186555%2fwhy-can-mathematica-solve-integralaintegralb-but-not-integralab%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown