Why can Mathematica solve integral(a)+integral(b), but not integral(a+b)?











up vote
3
down vote

favorite
1












I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



$$
text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
$$



Nevertheless the splitted integral can be solved.



$$
text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
$$



What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










share|improve this question







New contributor




Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
Check out our Code of Conduct.
























    up vote
    3
    down vote

    favorite
    1












    I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



    $$
    text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
    epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
    log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
    $$



    Nevertheless the splitted integral can be solved.



    $$
    text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
    epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
    ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
    $$



    What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










    share|improve this question







    New contributor




    Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
    Check out our Code of Conduct.






















      up vote
      3
      down vote

      favorite
      1









      up vote
      3
      down vote

      favorite
      1






      1





      I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



      $$
      text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
      epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
      log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
      $$



      Nevertheless the splitted integral can be solved.



      $$
      text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
      epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
      ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
      $$



      What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.










      share|improve this question







      New contributor




      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      I am new to Mathematica and came across the following problem. The integral at hand cannot be solved.



      $$
      text{Integrate}left[frac{2 left(3 t epsilon text{Li}_2(t)+3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{t-1}{t}right)+6
      epsilon text{Li}_2(-t)-6 epsilon text{Li}_2left(frac{t}{t+1}right)-pi ^2 t^2 epsilon +12 t^2 epsilon +3 t^2+12 t epsilon +3 epsilon
      log (1-t) log (t)+3 epsilon log (t) log (t+1)+3 t-3 log (t+1)right)}{3 t (t+1)},{t,0,1}right]
      $$



      Nevertheless the splitted integral can be solved.



      $$
      text{Integrate}left[frac{2 left(3 t+3 t^2+12 t epsilon +12 t^2 epsilon -pi ^2 t^2 epsilon right)}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 (3 epsilon log (1-t) log (t)-3 log (1+t)+3 epsilon log (t) log (1+t))}{3 t (1+t)},{t,0,1}right]+text{Integrate}left[frac{2 left(3 epsilon text{Li}_2left(-frac{1}{t}right)-3 epsilon text{Li}_2left(frac{-1+t}{t}right)+6
      epsilon text{Li}_2(-t)+3 t epsilon text{Li}_2(t)-6 epsilon text{Li}_2left(frac{t}{1+t}right)right)}{3 t (1+t)},{t,0,1}right] = epsilon left(-frac{5 zeta (3)}{2}+frac{1}{12} left(-105 zeta (3)-8 log ^3(2)+8 pi ^2 log (2)right)+frac{1}{3} left(24+pi
      ^2 (log (4)-2)right)+frac{1}{12} pi ^2 log (64)right)-frac{pi ^2}{6}+2+log ^2(2)
      $$



      What ist the reason for this issue? I thought that Mathematica tries to solve as much as possible and gives the unsolved parts as an integral.







      calculus-and-analysis






      share|improve this question







      New contributor




      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.











      share|improve this question







      New contributor




      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      share|improve this question




      share|improve this question






      New contributor




      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.









      asked Nov 23 at 9:49









      Schnarco

      182




      182




      New contributor




      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.





      New contributor





      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






      Schnarco is a new contributor to this site. Take care in asking for clarification, commenting, and answering.
      Check out our Code of Conduct.






















          1 Answer
          1






          active

          oldest

          votes

















          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22











          Your Answer





          StackExchange.ifUsing("editor", function () {
          return StackExchange.using("mathjaxEditing", function () {
          StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
          StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
          });
          });
          }, "mathjax-editing");

          StackExchange.ready(function() {
          var channelOptions = {
          tags: "".split(" "),
          id: "387"
          };
          initTagRenderer("".split(" "), "".split(" "), channelOptions);

          StackExchange.using("externalEditor", function() {
          // Have to fire editor after snippets, if snippets enabled
          if (StackExchange.settings.snippets.snippetsEnabled) {
          StackExchange.using("snippets", function() {
          createEditor();
          });
          }
          else {
          createEditor();
          }
          });

          function createEditor() {
          StackExchange.prepareEditor({
          heartbeatType: 'answer',
          convertImagesToLinks: false,
          noModals: true,
          showLowRepImageUploadWarning: true,
          reputationToPostImages: null,
          bindNavPrevention: true,
          postfix: "",
          imageUploader: {
          brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
          contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
          allowUrls: true
          },
          onDemand: true,
          discardSelector: ".discard-answer"
          ,immediatelyShowMarkdownHelp:true
          });


          }
          });






          Schnarco is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186555%2fwhy-can-mathematica-solve-integralaintegralb-but-not-integralab%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown

























          1 Answer
          1






          active

          oldest

          votes








          1 Answer
          1






          active

          oldest

          votes









          active

          oldest

          votes






          active

          oldest

          votes








          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22















          up vote
          2
          down vote



          accepted










          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer





















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22













          up vote
          2
          down vote



          accepted







          up vote
          2
          down vote



          accepted






          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here






          share|improve this answer












          This is a known problem with the standard Mathematica Integrate function.
          Therefore I wrote (a long long time ago) Integrate2 in FeynCalc ( a package for High Energy Physics which you can easily install from http://www.feyncalc.org) :



          Needs["FeynCalc`"]; 
          AbsoluteTiming[
          li2 = PolyLog[2, #1] & ;
          int = 2*((3*t*e*li2[t] + 3*e*li2[-t^(-1)] -
          3*e*li2[(t - 1)/t] + 6*e*li2[-t] -
          6*e*li2[t/(t + 1)] - Pi^2*t^2*e + 12*t^2*e +
          3*t^2 + 12*t*e + 3*e*Log[1 - t]*Log[t] +
          3*e*Log[t]*Log[t + 1] + 3*t - 3*Log[t + 1])/
          (3*t*(t + 1))); Collect[
          Integrate2[int, {t, 0, 1}] /. Zeta2 -> Zeta[2], e]]


          enter image description here







          share|improve this answer












          share|improve this answer



          share|improve this answer










          answered Nov 23 at 10:26









          Rolf Mertig

          13.6k13366




          13.6k13366












          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22


















          • Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
            – Schnarco
            Nov 23 at 10:47










          • Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
            – Rolf Mertig
            Nov 23 at 11:22
















          Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
          – Schnarco
          Nov 23 at 10:47




          Thanks a lot. I used FeynCalc some time ago but was not aware that it also provides improved integration routines. It is much faster than the standard function.
          – Schnarco
          Nov 23 at 10:47












          Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
          – Rolf Mertig
          Nov 23 at 11:22




          Integrate2 uses Integrate3 which is basically just a table lookup function (find the implemented list here)
          – Rolf Mertig
          Nov 23 at 11:22










          Schnarco is a new contributor. Be nice, and check out our Code of Conduct.










           

          draft saved


          draft discarded


















          Schnarco is a new contributor. Be nice, and check out our Code of Conduct.













          Schnarco is a new contributor. Be nice, and check out our Code of Conduct.












          Schnarco is a new contributor. Be nice, and check out our Code of Conduct.















           


          draft saved


          draft discarded














          StackExchange.ready(
          function () {
          StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmathematica.stackexchange.com%2fquestions%2f186555%2fwhy-can-mathematica-solve-integralaintegralb-but-not-integralab%23new-answer', 'question_page');
          }
          );

          Post as a guest















          Required, but never shown





















































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown

































          Required, but never shown














          Required, but never shown












          Required, but never shown







          Required, but never shown







          Popular posts from this blog

          flock() on closed filehandle LOCK_FILE at /usr/bin/apt-mirror

          Mangá

          Eduardo VII do Reino Unido