What's the derivative of $int_0^x e^{t^2} dt$?
up vote
2
down vote
favorite
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$ mathcal F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$mathcal F'(x) = mathcal f(x)$$
My question is the following: What will happen in this case?
$$mathcal H(x) = int_0^x e^{t^2} dt$$
Would the derivative be:
$$mathcal H'(x) = mathcal e^{x^2}$$
or
$$mathcal H'(x) = mathcal e^{x^2}-1$$
calculus
add a comment |
up vote
2
down vote
favorite
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$ mathcal F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$mathcal F'(x) = mathcal f(x)$$
My question is the following: What will happen in this case?
$$mathcal H(x) = int_0^x e^{t^2} dt$$
Would the derivative be:
$$mathcal H'(x) = mathcal e^{x^2}$$
or
$$mathcal H'(x) = mathcal e^{x^2}-1$$
calculus
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
4
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58
add a comment |
up vote
2
down vote
favorite
up vote
2
down vote
favorite
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$ mathcal F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$mathcal F'(x) = mathcal f(x)$$
My question is the following: What will happen in this case?
$$mathcal H(x) = int_0^x e^{t^2} dt$$
Would the derivative be:
$$mathcal H'(x) = mathcal e^{x^2}$$
or
$$mathcal H'(x) = mathcal e^{x^2}-1$$
calculus
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$ mathcal F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$mathcal F'(x) = mathcal f(x)$$
My question is the following: What will happen in this case?
$$mathcal H(x) = int_0^x e^{t^2} dt$$
Would the derivative be:
$$mathcal H'(x) = mathcal e^{x^2}$$
or
$$mathcal H'(x) = mathcal e^{x^2}-1$$
calculus
calculus
edited Dec 3 at 8:47
Asaf Karagila♦
301k32422752
301k32422752
asked Dec 2 at 23:49
Ryk
234
234
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
4
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58
add a comment |
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
4
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
4
4
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58
add a comment |
4 Answers
4
active
oldest
votes
up vote
3
down vote
accepted
If we use the idea in your comment (to the question) then $mathcal{F} '(x) $ should equal $f(x) - f(a) $ and not just $f(x) $ as mentioned in your question. I guess the confusion comes from mixing two parts of the Fundamental Theorem of Calculus (henceforth referred to as FTC).
Part 1 of FTC deals with an integral of the form $int_{a} ^{x} f(t) , dt$ where the lower limit of integral is a constant $a$ and upper limit $x$ is a variable. This then defines a new function, say $mathcal{F} :[a, b] tomathbb{R} $ via the relation $$mathcal {F} (x) =int_{a} ^{x} f(t) , dttag{1}$$ The goal of part 1 of FTC is to study the properties of this new function $mathcal{F} $ in terms of properties of $f$. And it says that $mathcal{F} $ is continuous on $[a, b] $ and if $f$ is continuous at some $cin[a, b] $ then $mathcal{F} $ is differentiable at $c$ and $mathcal{F} '(c) =f(c) $.
You should notice that the lower limit $a$ does not figure out in conclusion of the theorem. The value $mathcal{F} (x) $ depends on $f, a$ and $x$ but the value $mathcal{F}' (x) $ depends on $f$ and $x$ only.
Part 2 of FTC deals with the evaluation of $int_{a} ^{b} f(x) , dx$ under certain conditions. It assumes that $f$ is Riemann integrable on $[a, b] $ and possesses an anti-derivative $mathcal{F} $ so that $$mathcal{F} '(x) =f(x), forall xin[a, b] $$ and then says that $$int_{a} ^{b} f(x) , dx=mathcal{F} (b) - mathcal {F} (a) tag{2}$$ It is here that both the upper and lower limits of integration play key role and the integral is expressed as difference between the values of the anti-derivative.
Note that the $mathcal{F} $ in both parts of FTC are different and in particular the $mathcal{F} $ in part 1 is not necessarily an anti-derivative of $f$.
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
add a comment |
up vote
4
down vote
Note that $F(x+h)= F(x) + int_x^{x+h} f(t)dt$ and for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$. Hence we expect $F'(x) = f(x)$.
It is straightforward to make this argument rigorous.
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
add a comment |
up vote
1
down vote
Recall that in general by Leibniz integral rule the following holds
$$F(x)=int_{a(x)}^{b(x)}g(u) duimplies F'(x)=g(b(x))cdot b'(x)-g(a(x))cdot a'(x)$$
therefore
$$mathcal H(x) = int_0^x e^{t^2} dtimplies mathcal H'(x)=e^{x^2}$$
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
|
show 1 more comment
up vote
1
down vote
The simplest when applying a new formula is to identify each component:
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$F'(x) = mathcal f(x)$$
For $H(x) = int_0^x e^{t^2} dt$ we have $a=0$ (lower limit of integration) and $f(t)=e^{t^2}$.
It is also important to check that all conditions of the theorem are satisfied: here, the functions $g(t)=e^{t}$ and $h(t)=t^2$ are continuous on $mathbb R$, so their composition $f=gcirc h$ is continuous on $mathbb R$, hence on $[a,b]$.
Now, we can safely apply the formula: $H'(x) = f(x)=mathcal e^{x^2}$.
Edit: to answer a comment
What would happen if $a$ is not $0$?
Note that the formula depends only on $f$ and its continuity and not really on $a$. For example, consider $H_2(x)=int_1^{x} f(t); dt= int_1^x e^{t^2}; dt$. Then, all of the above applies here and we have
$$H_2'(x) = f(x) = e^{x^2} $$
Wait! Why do the functions $H_2$ and $H_1(x)=int^x_0 f(t); dt$ have the same derivative $f(x)=e^{x^2}$? That's clear when you remark that
$$H_1(x)=int_0^x f(t); dt=int_0^1 f(t); dt + int_1^x f(t); dt= C + H_2(x)$$
where $C=int_0^1 f(t); dt$. Since $C$ is a constant, we have $H_1'(x)=H_2'(x)$.
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
add a comment |
Your Answer
StackExchange.ifUsing("editor", function () {
return StackExchange.using("mathjaxEditing", function () {
StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
});
});
}, "mathjax-editing");
StackExchange.ready(function() {
var channelOptions = {
tags: "".split(" "),
id: "69"
};
initTagRenderer("".split(" "), "".split(" "), channelOptions);
StackExchange.using("externalEditor", function() {
// Have to fire editor after snippets, if snippets enabled
if (StackExchange.settings.snippets.snippetsEnabled) {
StackExchange.using("snippets", function() {
createEditor();
});
}
else {
createEditor();
}
});
function createEditor() {
StackExchange.prepareEditor({
heartbeatType: 'answer',
convertImagesToLinks: true,
noModals: true,
showLowRepImageUploadWarning: true,
reputationToPostImages: 10,
bindNavPrevention: true,
postfix: "",
imageUploader: {
brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
allowUrls: true
},
noCode: true, onDemand: true,
discardSelector: ".discard-answer"
,immediatelyShowMarkdownHelp:true
});
}
});
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023387%2fwhats-the-derivative-of-int-0x-et2-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
4 Answers
4
active
oldest
votes
4 Answers
4
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
3
down vote
accepted
If we use the idea in your comment (to the question) then $mathcal{F} '(x) $ should equal $f(x) - f(a) $ and not just $f(x) $ as mentioned in your question. I guess the confusion comes from mixing two parts of the Fundamental Theorem of Calculus (henceforth referred to as FTC).
Part 1 of FTC deals with an integral of the form $int_{a} ^{x} f(t) , dt$ where the lower limit of integral is a constant $a$ and upper limit $x$ is a variable. This then defines a new function, say $mathcal{F} :[a, b] tomathbb{R} $ via the relation $$mathcal {F} (x) =int_{a} ^{x} f(t) , dttag{1}$$ The goal of part 1 of FTC is to study the properties of this new function $mathcal{F} $ in terms of properties of $f$. And it says that $mathcal{F} $ is continuous on $[a, b] $ and if $f$ is continuous at some $cin[a, b] $ then $mathcal{F} $ is differentiable at $c$ and $mathcal{F} '(c) =f(c) $.
You should notice that the lower limit $a$ does not figure out in conclusion of the theorem. The value $mathcal{F} (x) $ depends on $f, a$ and $x$ but the value $mathcal{F}' (x) $ depends on $f$ and $x$ only.
Part 2 of FTC deals with the evaluation of $int_{a} ^{b} f(x) , dx$ under certain conditions. It assumes that $f$ is Riemann integrable on $[a, b] $ and possesses an anti-derivative $mathcal{F} $ so that $$mathcal{F} '(x) =f(x), forall xin[a, b] $$ and then says that $$int_{a} ^{b} f(x) , dx=mathcal{F} (b) - mathcal {F} (a) tag{2}$$ It is here that both the upper and lower limits of integration play key role and the integral is expressed as difference between the values of the anti-derivative.
Note that the $mathcal{F} $ in both parts of FTC are different and in particular the $mathcal{F} $ in part 1 is not necessarily an anti-derivative of $f$.
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
add a comment |
up vote
3
down vote
accepted
If we use the idea in your comment (to the question) then $mathcal{F} '(x) $ should equal $f(x) - f(a) $ and not just $f(x) $ as mentioned in your question. I guess the confusion comes from mixing two parts of the Fundamental Theorem of Calculus (henceforth referred to as FTC).
Part 1 of FTC deals with an integral of the form $int_{a} ^{x} f(t) , dt$ where the lower limit of integral is a constant $a$ and upper limit $x$ is a variable. This then defines a new function, say $mathcal{F} :[a, b] tomathbb{R} $ via the relation $$mathcal {F} (x) =int_{a} ^{x} f(t) , dttag{1}$$ The goal of part 1 of FTC is to study the properties of this new function $mathcal{F} $ in terms of properties of $f$. And it says that $mathcal{F} $ is continuous on $[a, b] $ and if $f$ is continuous at some $cin[a, b] $ then $mathcal{F} $ is differentiable at $c$ and $mathcal{F} '(c) =f(c) $.
You should notice that the lower limit $a$ does not figure out in conclusion of the theorem. The value $mathcal{F} (x) $ depends on $f, a$ and $x$ but the value $mathcal{F}' (x) $ depends on $f$ and $x$ only.
Part 2 of FTC deals with the evaluation of $int_{a} ^{b} f(x) , dx$ under certain conditions. It assumes that $f$ is Riemann integrable on $[a, b] $ and possesses an anti-derivative $mathcal{F} $ so that $$mathcal{F} '(x) =f(x), forall xin[a, b] $$ and then says that $$int_{a} ^{b} f(x) , dx=mathcal{F} (b) - mathcal {F} (a) tag{2}$$ It is here that both the upper and lower limits of integration play key role and the integral is expressed as difference between the values of the anti-derivative.
Note that the $mathcal{F} $ in both parts of FTC are different and in particular the $mathcal{F} $ in part 1 is not necessarily an anti-derivative of $f$.
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
add a comment |
up vote
3
down vote
accepted
up vote
3
down vote
accepted
If we use the idea in your comment (to the question) then $mathcal{F} '(x) $ should equal $f(x) - f(a) $ and not just $f(x) $ as mentioned in your question. I guess the confusion comes from mixing two parts of the Fundamental Theorem of Calculus (henceforth referred to as FTC).
Part 1 of FTC deals with an integral of the form $int_{a} ^{x} f(t) , dt$ where the lower limit of integral is a constant $a$ and upper limit $x$ is a variable. This then defines a new function, say $mathcal{F} :[a, b] tomathbb{R} $ via the relation $$mathcal {F} (x) =int_{a} ^{x} f(t) , dttag{1}$$ The goal of part 1 of FTC is to study the properties of this new function $mathcal{F} $ in terms of properties of $f$. And it says that $mathcal{F} $ is continuous on $[a, b] $ and if $f$ is continuous at some $cin[a, b] $ then $mathcal{F} $ is differentiable at $c$ and $mathcal{F} '(c) =f(c) $.
You should notice that the lower limit $a$ does not figure out in conclusion of the theorem. The value $mathcal{F} (x) $ depends on $f, a$ and $x$ but the value $mathcal{F}' (x) $ depends on $f$ and $x$ only.
Part 2 of FTC deals with the evaluation of $int_{a} ^{b} f(x) , dx$ under certain conditions. It assumes that $f$ is Riemann integrable on $[a, b] $ and possesses an anti-derivative $mathcal{F} $ so that $$mathcal{F} '(x) =f(x), forall xin[a, b] $$ and then says that $$int_{a} ^{b} f(x) , dx=mathcal{F} (b) - mathcal {F} (a) tag{2}$$ It is here that both the upper and lower limits of integration play key role and the integral is expressed as difference between the values of the anti-derivative.
Note that the $mathcal{F} $ in both parts of FTC are different and in particular the $mathcal{F} $ in part 1 is not necessarily an anti-derivative of $f$.
If we use the idea in your comment (to the question) then $mathcal{F} '(x) $ should equal $f(x) - f(a) $ and not just $f(x) $ as mentioned in your question. I guess the confusion comes from mixing two parts of the Fundamental Theorem of Calculus (henceforth referred to as FTC).
Part 1 of FTC deals with an integral of the form $int_{a} ^{x} f(t) , dt$ where the lower limit of integral is a constant $a$ and upper limit $x$ is a variable. This then defines a new function, say $mathcal{F} :[a, b] tomathbb{R} $ via the relation $$mathcal {F} (x) =int_{a} ^{x} f(t) , dttag{1}$$ The goal of part 1 of FTC is to study the properties of this new function $mathcal{F} $ in terms of properties of $f$. And it says that $mathcal{F} $ is continuous on $[a, b] $ and if $f$ is continuous at some $cin[a, b] $ then $mathcal{F} $ is differentiable at $c$ and $mathcal{F} '(c) =f(c) $.
You should notice that the lower limit $a$ does not figure out in conclusion of the theorem. The value $mathcal{F} (x) $ depends on $f, a$ and $x$ but the value $mathcal{F}' (x) $ depends on $f$ and $x$ only.
Part 2 of FTC deals with the evaluation of $int_{a} ^{b} f(x) , dx$ under certain conditions. It assumes that $f$ is Riemann integrable on $[a, b] $ and possesses an anti-derivative $mathcal{F} $ so that $$mathcal{F} '(x) =f(x), forall xin[a, b] $$ and then says that $$int_{a} ^{b} f(x) , dx=mathcal{F} (b) - mathcal {F} (a) tag{2}$$ It is here that both the upper and lower limits of integration play key role and the integral is expressed as difference between the values of the anti-derivative.
Note that the $mathcal{F} $ in both parts of FTC are different and in particular the $mathcal{F} $ in part 1 is not necessarily an anti-derivative of $f$.
edited Dec 3 at 1:40
answered Dec 3 at 1:31
Paramanand Singh
48.6k555156
48.6k555156
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
add a comment |
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
Very nce as usual! (+1)
– gimusi
Dec 3 at 7:49
add a comment |
up vote
4
down vote
Note that $F(x+h)= F(x) + int_x^{x+h} f(t)dt$ and for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$. Hence we expect $F'(x) = f(x)$.
It is straightforward to make this argument rigorous.
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
add a comment |
up vote
4
down vote
Note that $F(x+h)= F(x) + int_x^{x+h} f(t)dt$ and for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$. Hence we expect $F'(x) = f(x)$.
It is straightforward to make this argument rigorous.
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
add a comment |
up vote
4
down vote
up vote
4
down vote
Note that $F(x+h)= F(x) + int_x^{x+h} f(t)dt$ and for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$. Hence we expect $F'(x) = f(x)$.
It is straightforward to make this argument rigorous.
Note that $F(x+h)= F(x) + int_x^{x+h} f(t)dt$ and for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$. Hence we expect $F'(x) = f(x)$.
It is straightforward to make this argument rigorous.
answered Dec 2 at 23:57
copper.hat
125k559159
125k559159
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
add a comment |
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
1
1
Very nice (+1).
– gimusi
Dec 3 at 0:00
Very nice (+1).
– gimusi
Dec 3 at 0:00
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
You said for small $h$ we have $int_x^{x+h} f(t)dt approx int_x^{x+h} f(x)dt = f(x) h$ why are you not getting rid of the h from the second integral and say something like this given that h is very small, approaching zero. $int_x^{x+h} f(t)dt approx int_x^x f(x)dt = f(x) h$
– Ryk
Dec 3 at 0:06
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
@Ryk: You are trying to compute the limit as $h to 0$ of ${F(x+h)-F(x) over h}$. The above does is not divided across by $h$.
– copper.hat
Dec 3 at 2:32
add a comment |
up vote
1
down vote
Recall that in general by Leibniz integral rule the following holds
$$F(x)=int_{a(x)}^{b(x)}g(u) duimplies F'(x)=g(b(x))cdot b'(x)-g(a(x))cdot a'(x)$$
therefore
$$mathcal H(x) = int_0^x e^{t^2} dtimplies mathcal H'(x)=e^{x^2}$$
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
|
show 1 more comment
up vote
1
down vote
Recall that in general by Leibniz integral rule the following holds
$$F(x)=int_{a(x)}^{b(x)}g(u) duimplies F'(x)=g(b(x))cdot b'(x)-g(a(x))cdot a'(x)$$
therefore
$$mathcal H(x) = int_0^x e^{t^2} dtimplies mathcal H'(x)=e^{x^2}$$
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
|
show 1 more comment
up vote
1
down vote
up vote
1
down vote
Recall that in general by Leibniz integral rule the following holds
$$F(x)=int_{a(x)}^{b(x)}g(u) duimplies F'(x)=g(b(x))cdot b'(x)-g(a(x))cdot a'(x)$$
therefore
$$mathcal H(x) = int_0^x e^{t^2} dtimplies mathcal H'(x)=e^{x^2}$$
Recall that in general by Leibniz integral rule the following holds
$$F(x)=int_{a(x)}^{b(x)}g(u) duimplies F'(x)=g(b(x))cdot b'(x)-g(a(x))cdot a'(x)$$
therefore
$$mathcal H(x) = int_0^x e^{t^2} dtimplies mathcal H'(x)=e^{x^2}$$
answered Dec 2 at 23:51
gimusi
91.9k84495
91.9k84495
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
|
show 1 more comment
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
+1, very nice answer. I was not aware about Leibniz integral rule. Maybe I used it many times, but I was not aware that it was due to Leibniz.
– the_candyman
Dec 2 at 23:59
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
@the_candyman Thanks, much appreciative! Bye
– gimusi
Dec 3 at 0:00
3
3
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
That's correct but I feel that's killing a bird with a bazooka. The OP has obviously problems with the application of a simple formula, why would a more general formula be helpful?
– Taladris
Dec 3 at 0:00
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
@Taladris Yes you are right but also I want to give a more general reference for more general cases.
– gimusi
Dec 3 at 0:02
1
1
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
@YiFan Exactly! I think that it is a important reference to keep in mind.All other answers are also very useful to give a full picture for the OP. Bye
– gimusi
Dec 3 at 7:52
|
show 1 more comment
up vote
1
down vote
The simplest when applying a new formula is to identify each component:
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$F'(x) = mathcal f(x)$$
For $H(x) = int_0^x e^{t^2} dt$ we have $a=0$ (lower limit of integration) and $f(t)=e^{t^2}$.
It is also important to check that all conditions of the theorem are satisfied: here, the functions $g(t)=e^{t}$ and $h(t)=t^2$ are continuous on $mathbb R$, so their composition $f=gcirc h$ is continuous on $mathbb R$, hence on $[a,b]$.
Now, we can safely apply the formula: $H'(x) = f(x)=mathcal e^{x^2}$.
Edit: to answer a comment
What would happen if $a$ is not $0$?
Note that the formula depends only on $f$ and its continuity and not really on $a$. For example, consider $H_2(x)=int_1^{x} f(t); dt= int_1^x e^{t^2}; dt$. Then, all of the above applies here and we have
$$H_2'(x) = f(x) = e^{x^2} $$
Wait! Why do the functions $H_2$ and $H_1(x)=int^x_0 f(t); dt$ have the same derivative $f(x)=e^{x^2}$? That's clear when you remark that
$$H_1(x)=int_0^x f(t); dt=int_0^1 f(t); dt + int_1^x f(t); dt= C + H_2(x)$$
where $C=int_0^1 f(t); dt$. Since $C$ is a constant, we have $H_1'(x)=H_2'(x)$.
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
add a comment |
up vote
1
down vote
The simplest when applying a new formula is to identify each component:
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$F'(x) = mathcal f(x)$$
For $H(x) = int_0^x e^{t^2} dt$ we have $a=0$ (lower limit of integration) and $f(t)=e^{t^2}$.
It is also important to check that all conditions of the theorem are satisfied: here, the functions $g(t)=e^{t}$ and $h(t)=t^2$ are continuous on $mathbb R$, so their composition $f=gcirc h$ is continuous on $mathbb R$, hence on $[a,b]$.
Now, we can safely apply the formula: $H'(x) = f(x)=mathcal e^{x^2}$.
Edit: to answer a comment
What would happen if $a$ is not $0$?
Note that the formula depends only on $f$ and its continuity and not really on $a$. For example, consider $H_2(x)=int_1^{x} f(t); dt= int_1^x e^{t^2}; dt$. Then, all of the above applies here and we have
$$H_2'(x) = f(x) = e^{x^2} $$
Wait! Why do the functions $H_2$ and $H_1(x)=int^x_0 f(t); dt$ have the same derivative $f(x)=e^{x^2}$? That's clear when you remark that
$$H_1(x)=int_0^x f(t); dt=int_0^1 f(t); dt + int_1^x f(t); dt= C + H_2(x)$$
where $C=int_0^1 f(t); dt$. Since $C$ is a constant, we have $H_1'(x)=H_2'(x)$.
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
add a comment |
up vote
1
down vote
up vote
1
down vote
The simplest when applying a new formula is to identify each component:
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$F'(x) = mathcal f(x)$$
For $H(x) = int_0^x e^{t^2} dt$ we have $a=0$ (lower limit of integration) and $f(t)=e^{t^2}$.
It is also important to check that all conditions of the theorem are satisfied: here, the functions $g(t)=e^{t}$ and $h(t)=t^2$ are continuous on $mathbb R$, so their composition $f=gcirc h$ is continuous on $mathbb R$, hence on $[a,b]$.
Now, we can safely apply the formula: $H'(x) = f(x)=mathcal e^{x^2}$.
Edit: to answer a comment
What would happen if $a$ is not $0$?
Note that the formula depends only on $f$ and its continuity and not really on $a$. For example, consider $H_2(x)=int_1^{x} f(t); dt= int_1^x e^{t^2}; dt$. Then, all of the above applies here and we have
$$H_2'(x) = f(x) = e^{x^2} $$
Wait! Why do the functions $H_2$ and $H_1(x)=int^x_0 f(t); dt$ have the same derivative $f(x)=e^{x^2}$? That's clear when you remark that
$$H_1(x)=int_0^x f(t); dt=int_0^1 f(t); dt + int_1^x f(t); dt= C + H_2(x)$$
where $C=int_0^1 f(t); dt$. Since $C$ is a constant, we have $H_1'(x)=H_2'(x)$.
The simplest when applying a new formula is to identify each component:
Let f be a continuous function on the interval $[a, b]$. The function F defined by
$$F(x) = int_a^x f(t)dt $$
is continuous on $[a,b]$, differentiable on $(a,b)$ and has derivative
$$F'(x) = mathcal f(x)$$
For $H(x) = int_0^x e^{t^2} dt$ we have $a=0$ (lower limit of integration) and $f(t)=e^{t^2}$.
It is also important to check that all conditions of the theorem are satisfied: here, the functions $g(t)=e^{t}$ and $h(t)=t^2$ are continuous on $mathbb R$, so their composition $f=gcirc h$ is continuous on $mathbb R$, hence on $[a,b]$.
Now, we can safely apply the formula: $H'(x) = f(x)=mathcal e^{x^2}$.
Edit: to answer a comment
What would happen if $a$ is not $0$?
Note that the formula depends only on $f$ and its continuity and not really on $a$. For example, consider $H_2(x)=int_1^{x} f(t); dt= int_1^x e^{t^2}; dt$. Then, all of the above applies here and we have
$$H_2'(x) = f(x) = e^{x^2} $$
Wait! Why do the functions $H_2$ and $H_1(x)=int^x_0 f(t); dt$ have the same derivative $f(x)=e^{x^2}$? That's clear when you remark that
$$H_1(x)=int_0^x f(t); dt=int_0^1 f(t); dt + int_1^x f(t); dt= C + H_2(x)$$
where $C=int_0^1 f(t); dt$. Since $C$ is a constant, we have $H_1'(x)=H_2'(x)$.
edited Dec 3 at 0:10
answered Dec 2 at 23:59
Taladris
4,63631832
4,63631832
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
add a comment |
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
What happens when a is not zero then ?
– Ryk
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
Nice and simple approach! (+1)
– gimusi
Dec 3 at 0:02
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
@Ryk For the general case refer to the link I've given for Leibniz's rule.
– gimusi
Dec 3 at 0:11
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
Thank you, super approach! @Taladris
– Ryk
Dec 3 at 0:45
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
@gimusi, I will take a look into it, thank you!
– Ryk
Dec 3 at 0:46
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3023387%2fwhats-the-derivative-of-int-0x-et2-dt%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Welcome to MSE; please proofread your question before posting, and use the formatting guide to fix this.
– T. Bongers
Dec 2 at 23:51
4
Why would it be $mathcal H'(x) = e^{x^2} - 1$? Where would the $-1$ come from?
– littleO
Dec 2 at 23:55
$e^{t^2}$ you replace t with x - $e^{t^2}$ you replace t with 0.
– Ryk
Dec 2 at 23:58