A diifficulty in understanding a sentence in a paragraph in Guillemin and Pollack p.77
up vote
1
down vote
favorite
The paragraph is given below:
But I have a difficulty in understanding the sentence starting in the forth line by "If we furthur ...." until its end, could anyone explain it for me please?
thanks!
general-topology differential-topology compactness
add a comment |
up vote
1
down vote
favorite
The paragraph is given below:
But I have a difficulty in understanding the sentence starting in the forth line by "If we furthur ...." until its end, could anyone explain it for me please?
thanks!
general-topology differential-topology compactness
add a comment |
up vote
1
down vote
favorite
up vote
1
down vote
favorite
The paragraph is given below:
But I have a difficulty in understanding the sentence starting in the forth line by "If we furthur ...." until its end, could anyone explain it for me please?
thanks!
general-topology differential-topology compactness
The paragraph is given below:
But I have a difficulty in understanding the sentence starting in the forth line by "If we furthur ...." until its end, could anyone explain it for me please?
thanks!
general-topology differential-topology compactness
general-topology differential-topology compactness
asked 1 hour ago
hopefully
125112
125112
add a comment |
add a comment |
2 Answers
2
active
oldest
votes
up vote
4
down vote
This is all basic point-set stuff. $X cap Z$ is a $0$-dimensional manifold, so it is discrete. If both $X$ and $Z$ are closed then so is $X cap Z$. If, say, $X$ is compact, then $X cap Z subseteq X$. Hence $X cap Z$ is a closed subset of a compact space, so it is compact. Since it is compact and discrete, it is finite.
add a comment |
up vote
2
down vote
If $X$ and $Z$ are closed and at least one of them is compact, then $Xcap Z$ is closed and compact (the intersection of closed sets is closed, and a closed subset of a compact set is compact). Then, the statement is that compact zero-dimensional submanifolds must be finite, which is clear. Zero-dimensional manifolds are discrete, and discrete compact sets are finite.
add a comment |
2 Answers
2
active
oldest
votes
2 Answers
2
active
oldest
votes
active
oldest
votes
active
oldest
votes
up vote
4
down vote
This is all basic point-set stuff. $X cap Z$ is a $0$-dimensional manifold, so it is discrete. If both $X$ and $Z$ are closed then so is $X cap Z$. If, say, $X$ is compact, then $X cap Z subseteq X$. Hence $X cap Z$ is a closed subset of a compact space, so it is compact. Since it is compact and discrete, it is finite.
add a comment |
up vote
4
down vote
This is all basic point-set stuff. $X cap Z$ is a $0$-dimensional manifold, so it is discrete. If both $X$ and $Z$ are closed then so is $X cap Z$. If, say, $X$ is compact, then $X cap Z subseteq X$. Hence $X cap Z$ is a closed subset of a compact space, so it is compact. Since it is compact and discrete, it is finite.
add a comment |
up vote
4
down vote
up vote
4
down vote
This is all basic point-set stuff. $X cap Z$ is a $0$-dimensional manifold, so it is discrete. If both $X$ and $Z$ are closed then so is $X cap Z$. If, say, $X$ is compact, then $X cap Z subseteq X$. Hence $X cap Z$ is a closed subset of a compact space, so it is compact. Since it is compact and discrete, it is finite.
This is all basic point-set stuff. $X cap Z$ is a $0$-dimensional manifold, so it is discrete. If both $X$ and $Z$ are closed then so is $X cap Z$. If, say, $X$ is compact, then $X cap Z subseteq X$. Hence $X cap Z$ is a closed subset of a compact space, so it is compact. Since it is compact and discrete, it is finite.
answered 1 hour ago
Randall
8,77811128
8,77811128
add a comment |
add a comment |
up vote
2
down vote
If $X$ and $Z$ are closed and at least one of them is compact, then $Xcap Z$ is closed and compact (the intersection of closed sets is closed, and a closed subset of a compact set is compact). Then, the statement is that compact zero-dimensional submanifolds must be finite, which is clear. Zero-dimensional manifolds are discrete, and discrete compact sets are finite.
add a comment |
up vote
2
down vote
If $X$ and $Z$ are closed and at least one of them is compact, then $Xcap Z$ is closed and compact (the intersection of closed sets is closed, and a closed subset of a compact set is compact). Then, the statement is that compact zero-dimensional submanifolds must be finite, which is clear. Zero-dimensional manifolds are discrete, and discrete compact sets are finite.
add a comment |
up vote
2
down vote
up vote
2
down vote
If $X$ and $Z$ are closed and at least one of them is compact, then $Xcap Z$ is closed and compact (the intersection of closed sets is closed, and a closed subset of a compact set is compact). Then, the statement is that compact zero-dimensional submanifolds must be finite, which is clear. Zero-dimensional manifolds are discrete, and discrete compact sets are finite.
If $X$ and $Z$ are closed and at least one of them is compact, then $Xcap Z$ is closed and compact (the intersection of closed sets is closed, and a closed subset of a compact set is compact). Then, the statement is that compact zero-dimensional submanifolds must be finite, which is clear. Zero-dimensional manifolds are discrete, and discrete compact sets are finite.
answered 1 hour ago
Rolf Hoyer
10.9k31629
10.9k31629
add a comment |
add a comment |
Thanks for contributing an answer to Mathematics Stack Exchange!
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
Use MathJax to format equations. MathJax reference.
To learn more, see our tips on writing great answers.
Some of your past answers have not been well-received, and you're in danger of being blocked from answering.
Please pay close attention to the following guidance:
- Please be sure to answer the question. Provide details and share your research!
But avoid …
- Asking for help, clarification, or responding to other answers.
- Making statements based on opinion; back them up with references or personal experience.
To learn more, see our tips on writing great answers.
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
StackExchange.ready(
function () {
StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fmath.stackexchange.com%2fquestions%2f3030610%2fa-diifficulty-in-understanding-a-sentence-in-a-paragraph-in-guillemin-and-pollac%23new-answer', 'question_page');
}
);
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Sign up or log in
StackExchange.ready(function () {
StackExchange.helpers.onClickDraftSave('#login-link');
});
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Sign up using Google
Sign up using Facebook
Sign up using Email and Password
Post as a guest
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown
Required, but never shown