Is Earth an inertial reference frame?











up vote
1
down vote

favorite












Is earth considered as inertial frame? i was confused because we learned about coriolis effect. We know that earth spins therefore coriolis effect should take place . But does it have minimal effect for motion of balls etc when they move with respect to the ground?










share|cite|improve this question
























  • you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
    – JEB
    3 hours ago















up vote
1
down vote

favorite












Is earth considered as inertial frame? i was confused because we learned about coriolis effect. We know that earth spins therefore coriolis effect should take place . But does it have minimal effect for motion of balls etc when they move with respect to the ground?










share|cite|improve this question
























  • you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
    – JEB
    3 hours ago













up vote
1
down vote

favorite









up vote
1
down vote

favorite











Is earth considered as inertial frame? i was confused because we learned about coriolis effect. We know that earth spins therefore coriolis effect should take place . But does it have minimal effect for motion of balls etc when they move with respect to the ground?










share|cite|improve this question















Is earth considered as inertial frame? i was confused because we learned about coriolis effect. We know that earth spins therefore coriolis effect should take place . But does it have minimal effect for motion of balls etc when they move with respect to the ground?







newtonian-mechanics reference-frames inertial-frames earth coriolis-effect






share|cite|improve this question















share|cite|improve this question













share|cite|improve this question




share|cite|improve this question








edited 1 hour ago









Qmechanic

100k121791123




100k121791123










asked 4 hours ago









ado sar

977




977












  • you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
    – JEB
    3 hours ago


















  • you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
    – JEB
    3 hours ago
















you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
– JEB
3 hours ago




you can calculate it's size, e.g, for a BMG 50 cal (853 m/s muzzle velocity) shot at its max effective range (1,800m) and tell us.
– JEB
3 hours ago










2 Answers
2






active

oldest

votes

















up vote
2
down vote













The surface of the Earth is not, rigorously speaking, an inertial frame of reference. Objects at rest relative to Earth's surface are actually subject to a series of inertial effects, like the ficticious forces (Coriolis, centrifugal etc.) because of Earth's rotation, precession and other kinds of acceleration.



When solving physics problems, however, we usually take the Earth frame as being inertial. This is because the inertial effects are minuscule for most of our day-to-day experiences and experiments. For example, objects in the Equator are the ones subject to the strongest centrifugal force and it is only about $3 times10^{-3}$ or $0.3%$ of their weight.



So for the most part, if an experiment is short enough and happens in a small enough region, the surface of Earth can indeed be approximated to an inertial frame of reference since the effects on the experiment's results are very, very tiny.



This of course has exceptions, as cited in njspeer's answer.



If however by "Earth" you mean the reference frame in Earth's center, it also not inertial due to the fact that the planet accelerates while orbiting the Sun and the Milky Way.






share|cite|improve this answer




























    up vote
    1
    down vote













    Because the earth is rotating, it is never strictly an inertial reference frame. However, because the effects are small in many situations, it can often be approximated as one. When to use Coriolis forces will have to be determined on a case-by-case basis. E.g. ballistic problems that cover large distances will most certainly require Coriolis-force corrections, and pendulums that swings for a long time would also require Coriolis-force corrections. For a block sliding down an inclined plane, or a spring on a mass, or a vibrating string, you should not need to take it into consideration.






    share|cite|improve this answer























      Your Answer





      StackExchange.ifUsing("editor", function () {
      return StackExchange.using("mathjaxEditing", function () {
      StackExchange.MarkdownEditor.creationCallbacks.add(function (editor, postfix) {
      StackExchange.mathjaxEditing.prepareWmdForMathJax(editor, postfix, [["$", "$"], ["\\(","\\)"]]);
      });
      });
      }, "mathjax-editing");

      StackExchange.ready(function() {
      var channelOptions = {
      tags: "".split(" "),
      id: "151"
      };
      initTagRenderer("".split(" "), "".split(" "), channelOptions);

      StackExchange.using("externalEditor", function() {
      // Have to fire editor after snippets, if snippets enabled
      if (StackExchange.settings.snippets.snippetsEnabled) {
      StackExchange.using("snippets", function() {
      createEditor();
      });
      }
      else {
      createEditor();
      }
      });

      function createEditor() {
      StackExchange.prepareEditor({
      heartbeatType: 'answer',
      convertImagesToLinks: false,
      noModals: true,
      showLowRepImageUploadWarning: true,
      reputationToPostImages: null,
      bindNavPrevention: true,
      postfix: "",
      imageUploader: {
      brandingHtml: "Powered by u003ca class="icon-imgur-white" href="https://imgur.com/"u003eu003c/au003e",
      contentPolicyHtml: "User contributions licensed under u003ca href="https://creativecommons.org/licenses/by-sa/3.0/"u003ecc by-sa 3.0 with attribution requiredu003c/au003e u003ca href="https://stackoverflow.com/legal/content-policy"u003e(content policy)u003c/au003e",
      allowUrls: true
      },
      noCode: true, onDemand: true,
      discardSelector: ".discard-answer"
      ,immediatelyShowMarkdownHelp:true
      });


      }
      });














      draft saved

      draft discarded


















      StackExchange.ready(
      function () {
      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f444580%2fis-earth-an-inertial-reference-frame%23new-answer', 'question_page');
      }
      );

      Post as a guest















      Required, but never shown

























      2 Answers
      2






      active

      oldest

      votes








      2 Answers
      2






      active

      oldest

      votes









      active

      oldest

      votes






      active

      oldest

      votes








      up vote
      2
      down vote













      The surface of the Earth is not, rigorously speaking, an inertial frame of reference. Objects at rest relative to Earth's surface are actually subject to a series of inertial effects, like the ficticious forces (Coriolis, centrifugal etc.) because of Earth's rotation, precession and other kinds of acceleration.



      When solving physics problems, however, we usually take the Earth frame as being inertial. This is because the inertial effects are minuscule for most of our day-to-day experiences and experiments. For example, objects in the Equator are the ones subject to the strongest centrifugal force and it is only about $3 times10^{-3}$ or $0.3%$ of their weight.



      So for the most part, if an experiment is short enough and happens in a small enough region, the surface of Earth can indeed be approximated to an inertial frame of reference since the effects on the experiment's results are very, very tiny.



      This of course has exceptions, as cited in njspeer's answer.



      If however by "Earth" you mean the reference frame in Earth's center, it also not inertial due to the fact that the planet accelerates while orbiting the Sun and the Milky Way.






      share|cite|improve this answer

























        up vote
        2
        down vote













        The surface of the Earth is not, rigorously speaking, an inertial frame of reference. Objects at rest relative to Earth's surface are actually subject to a series of inertial effects, like the ficticious forces (Coriolis, centrifugal etc.) because of Earth's rotation, precession and other kinds of acceleration.



        When solving physics problems, however, we usually take the Earth frame as being inertial. This is because the inertial effects are minuscule for most of our day-to-day experiences and experiments. For example, objects in the Equator are the ones subject to the strongest centrifugal force and it is only about $3 times10^{-3}$ or $0.3%$ of their weight.



        So for the most part, if an experiment is short enough and happens in a small enough region, the surface of Earth can indeed be approximated to an inertial frame of reference since the effects on the experiment's results are very, very tiny.



        This of course has exceptions, as cited in njspeer's answer.



        If however by "Earth" you mean the reference frame in Earth's center, it also not inertial due to the fact that the planet accelerates while orbiting the Sun and the Milky Way.






        share|cite|improve this answer























          up vote
          2
          down vote










          up vote
          2
          down vote









          The surface of the Earth is not, rigorously speaking, an inertial frame of reference. Objects at rest relative to Earth's surface are actually subject to a series of inertial effects, like the ficticious forces (Coriolis, centrifugal etc.) because of Earth's rotation, precession and other kinds of acceleration.



          When solving physics problems, however, we usually take the Earth frame as being inertial. This is because the inertial effects are minuscule for most of our day-to-day experiences and experiments. For example, objects in the Equator are the ones subject to the strongest centrifugal force and it is only about $3 times10^{-3}$ or $0.3%$ of their weight.



          So for the most part, if an experiment is short enough and happens in a small enough region, the surface of Earth can indeed be approximated to an inertial frame of reference since the effects on the experiment's results are very, very tiny.



          This of course has exceptions, as cited in njspeer's answer.



          If however by "Earth" you mean the reference frame in Earth's center, it also not inertial due to the fact that the planet accelerates while orbiting the Sun and the Milky Way.






          share|cite|improve this answer












          The surface of the Earth is not, rigorously speaking, an inertial frame of reference. Objects at rest relative to Earth's surface are actually subject to a series of inertial effects, like the ficticious forces (Coriolis, centrifugal etc.) because of Earth's rotation, precession and other kinds of acceleration.



          When solving physics problems, however, we usually take the Earth frame as being inertial. This is because the inertial effects are minuscule for most of our day-to-day experiences and experiments. For example, objects in the Equator are the ones subject to the strongest centrifugal force and it is only about $3 times10^{-3}$ or $0.3%$ of their weight.



          So for the most part, if an experiment is short enough and happens in a small enough region, the surface of Earth can indeed be approximated to an inertial frame of reference since the effects on the experiment's results are very, very tiny.



          This of course has exceptions, as cited in njspeer's answer.



          If however by "Earth" you mean the reference frame in Earth's center, it also not inertial due to the fact that the planet accelerates while orbiting the Sun and the Milky Way.







          share|cite|improve this answer












          share|cite|improve this answer



          share|cite|improve this answer










          answered 3 hours ago









          João Vítor G. Lima

          608118




          608118






















              up vote
              1
              down vote













              Because the earth is rotating, it is never strictly an inertial reference frame. However, because the effects are small in many situations, it can often be approximated as one. When to use Coriolis forces will have to be determined on a case-by-case basis. E.g. ballistic problems that cover large distances will most certainly require Coriolis-force corrections, and pendulums that swings for a long time would also require Coriolis-force corrections. For a block sliding down an inclined plane, or a spring on a mass, or a vibrating string, you should not need to take it into consideration.






              share|cite|improve this answer



























                up vote
                1
                down vote













                Because the earth is rotating, it is never strictly an inertial reference frame. However, because the effects are small in many situations, it can often be approximated as one. When to use Coriolis forces will have to be determined on a case-by-case basis. E.g. ballistic problems that cover large distances will most certainly require Coriolis-force corrections, and pendulums that swings for a long time would also require Coriolis-force corrections. For a block sliding down an inclined plane, or a spring on a mass, or a vibrating string, you should not need to take it into consideration.






                share|cite|improve this answer

























                  up vote
                  1
                  down vote










                  up vote
                  1
                  down vote









                  Because the earth is rotating, it is never strictly an inertial reference frame. However, because the effects are small in many situations, it can often be approximated as one. When to use Coriolis forces will have to be determined on a case-by-case basis. E.g. ballistic problems that cover large distances will most certainly require Coriolis-force corrections, and pendulums that swings for a long time would also require Coriolis-force corrections. For a block sliding down an inclined plane, or a spring on a mass, or a vibrating string, you should not need to take it into consideration.






                  share|cite|improve this answer














                  Because the earth is rotating, it is never strictly an inertial reference frame. However, because the effects are small in many situations, it can often be approximated as one. When to use Coriolis forces will have to be determined on a case-by-case basis. E.g. ballistic problems that cover large distances will most certainly require Coriolis-force corrections, and pendulums that swings for a long time would also require Coriolis-force corrections. For a block sliding down an inclined plane, or a spring on a mass, or a vibrating string, you should not need to take it into consideration.







                  share|cite|improve this answer














                  share|cite|improve this answer



                  share|cite|improve this answer








                  edited 28 mins ago

























                  answered 3 hours ago









                  njspeer

                  3594




                  3594






























                      draft saved

                      draft discarded




















































                      Thanks for contributing an answer to Physics Stack Exchange!


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      Use MathJax to format equations. MathJax reference.


                      To learn more, see our tips on writing great answers.





                      Some of your past answers have not been well-received, and you're in danger of being blocked from answering.


                      Please pay close attention to the following guidance:


                      • Please be sure to answer the question. Provide details and share your research!

                      But avoid



                      • Asking for help, clarification, or responding to other answers.

                      • Making statements based on opinion; back them up with references or personal experience.


                      To learn more, see our tips on writing great answers.




                      draft saved


                      draft discarded














                      StackExchange.ready(
                      function () {
                      StackExchange.openid.initPostLogin('.new-post-login', 'https%3a%2f%2fphysics.stackexchange.com%2fquestions%2f444580%2fis-earth-an-inertial-reference-frame%23new-answer', 'question_page');
                      }
                      );

                      Post as a guest















                      Required, but never shown





















































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown

































                      Required, but never shown














                      Required, but never shown












                      Required, but never shown







                      Required, but never shown







                      Popular posts from this blog

                      flock() on closed filehandle LOCK_FILE at /usr/bin/apt-mirror

                      Mangá

                      Eduardo VII do Reino Unido